
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

We introduce faust2smartphone, a tool to generate an edit-ready project 
for musical mobile application, which connects Faust programming 
language and mobile application’s development. It is an extended 
implementation of faust2api. Faust DSP objects can be easily embedded 
as a high level API so that the developers can access various functions 
and elements across different mobile platforms. This paper provides 
several modes and technical details on the structures and implementation 
of this system as well as some applications and future directions for this 
tool. 

ABSTRACT 

BACKGROUND

When simple mode is used, faust2api is automatically called and copies 
the generated files (e.g., DspFaust.cpp and DspFaust.h) to a template 
XCode or Android Studio project. That is what we call an “edit-ready” 
project, which bears the same name as the Faust code, embeds the Faust 
audio DSP engine and is ready to be used. This project is just a workplace 
to start, all the faust2api functions can be used and custom interfaces can 
be designed.

APPLICATIONS

faust2smartphone has already been used in these productions:
“Audio Guide” is an application designed by Christophe Lebreton and me 
for blind person to experience a special sound map in the project created 
by GRAME and La Maison des Aveugles in Lyon. Check the introduction 
online: http://www.grame.fr/events/carte-sonore-de-traces-en-traces.
“Virtual Rhizome” at 2018 Biennale of Music in Lyon, created by Vincent-
Raphaël Carinola and Christophe Lebreton, is performed by a solo artist 
armed by two smartphones. You can check a video clip online: 
https://www.youtube.com/watch?v=cGZB44KI9Y0.
“sfPivoine” is a mobile application which I created for a participative 
“Pivone”. The spectators could have an immersive and augmented 
experience with their participations. The application is both available at 
App Store and Google Play. 

Mobile devices are increasingly used as musical instruments in the context 
of interactive performances and installations. Current real-time audio or 
DSP (Digital Signal Processing) API (Application Programming Interface) 
provided by common development environments are written in different 
programming languages and not easily approachable by composers and 
sound engineers of interactive electronic music. 
Faust[1] (Functional Audio Stream) is a functional programming language 
for sound synthesis and audio processing with a strong focus on the 
design of synthesizers, musical instruments, audio effects, etc. Faust 
targets high-performance signal processing applications and audio plug-ins 
for a variety of platforms and standards. The goal of the faust2api is to 
provide a tool to easily generate custom APIs based on one or several 
Faust objects. 
We introduce faust2smartphone, a tool to generate editable musical mobile 
application projects using the Faust programming language. 
faust2smartphone works as an extension of faust2api. Faust DSP objects 
can be easily embedded as a high level API so that developers can access 
various functions and elements across different mobile platforms. We 
wanted to extend the capabilities of faust2api by adding more specific 
functions to facilitate the development of musical mobile applications. In 
this paper, we present faust2smartphone which provides the same features 
on iOS and Android (Windows phones are not supported yet). For now, 
faust2smartphone is a separate branch and maintained on Github. 
Normally it should work with the latest version of the Faust official branch. 

You can find all the source of this project on 
https://github.com/RuolunWeng/faust2smartphone.git

Shanghai Conservatory of Music, Shanghai, CHINA 

WENG Ruolun
allen1991shcm@gmail.com

Interactive Mobile Musical Application using 
faust2smartphone 

OVERVIEW

Motion mode is a special mode based on motion.lib and can be used as a 
platform to prototype musical applications involving motion gestures. 
motion.lib written in Faust uses the accelerometer, gyroscope, and rotation 
matrix signals provided by smartphones as an input. The output is the 
result of sensor’s processing.
For the syntax, we need to do is a declaration in the metadata of the 
controller like:
toto=hslider(“toto[motion:ixp]”,0,0,1,0.01);
Where “motion” is the keyword, followed by which function you want to call 
in the motion.lib.By default, all the processes in motion.lib are muted to 
save CPU consumption; only if the program detects that you call the 
function, it will activate the corresponding process and affect this controller 
with the result calculated. We have some other reserved keywords 
declarations:
toto=checkbox(“touchgate”);
tata=nentry(“cue”,0,0,5,1);
titi=hslider(“screenx/screeny”,0,0,1,0.01);
This suite works with a sub-mode of motion mode, we call it cueManager. 
We provide a simple interface for this mode to deal with the code 
composed with different cues. To active cueManager, you just need to add 
–cuemanager in the command line.

Followed by the installation instruction of Faust and faust2smarphone, you 
are ready to explore the function by simply taping in your terminal 
“faust2smartphone -help” for the details. As faust2smartphone is designed 
for iOS and Android, “-ios, -iosmotion, -iosplugin” and “-android, -
androidmotion, -androidplugin” will guide you to the target. 
faust2smartphone inherits from faust2api, so almost all the options for 
mobile systems are ready to be called, including: “-oscall/-oscalias” will 
activate the OSC (Open Sound Control) interface; “-soundfile” to active 
libsndfile support.


